Sublinear Approximation of Signals

نویسندگان

  • Anna C. Gilbert
  • Martin J. Strauss
  • Joel A. Tropp
  • Roman Vershynin
چکیده

It has recently been observed that sparse and compressible signals can be sketched using very few nonadaptive linear measurements in comparison with the length of the signal. This sketch can be viewed as an embedding of an entire class of compressible signals into a low-dimensional space. In particular, d-dimensional signals with m nonzero entries (m-sparse signals) can be embedded in O(m log d) dimensions. To date, most algorithms for approximating or reconstructing the signal from the sketch, such as the linear programming approach proposed by Candès–Tao and Donoho, require time polynomial in the signal length. This paper develops a new method, called Chaining Pursuit, for sketching both m-sparse and compressible signals with O(m polylog d) nonadaptive linear measurements. The algorithm can reconstruct the original signal in time O(m polylog d) with an error proportional to the optimal m-term approximation error. In particular, m-sparse signals are recovered perfectly and compressible signals are recovered with polylogarithmic distortion. Moreover, the algorithm can operate in small space O(m polylog d), so it is appropriate for streaming data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Subliner Time Approximation and Inapproximation for Maximum Coverage

We develop a randomized approximation algorithm for the classical maximum coverage problem, which given a list of sets A1, A2, · · · , An and integer parameter k, select k sets Ai 1 , Ai 2 , · · · , Ai k for maximum union Ai 1 ∪ Ai 2 ∪ · · · ∪ Ai k. In our algorithm, each input set Ai is a black box that can provide its size |Ai|, generate a random element of Ai, and answer the membership query...

متن کامل

A Sublinear Algorithm for Sparse Reconstruction with l2/l2 Recovery Guarantees

Compressed Sensing aims to capture attributes of a sparse signal using very few measurements. Candès and Tao showed that sparse reconstruction is possible if the sensing matrix acts as a near isometry on all k-sparse signals. This property holds with overwhelming probability if the entries of the matrix are generated by an iid Gaussian or Bernoulli process. There has been significant recent int...

متن کامل

Learning Noisy Characters, Multiplication Codes, and Cryptographic Hardcore Predicates

We present results in cryptography, coding theory and sublinear algorithms. In cryptography, we introduce a unifying framework for proving that a Boolean predicate is hardcore for a one-way function and apply it to a broad family of functions and predicates, showing new hardcore predicates for well known one-way function candidates such as RSA and discrete-log as well as reproving old results i...

متن کامل

Sublinear Graph Approximation Algorithms

Motivation Want to learn a combinatorial parameter of a graph: the maximum matching size the independence number α(G), the minimum vertex cover size, the minimum dominating set size Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 2/32 Motivation Want to learn a combinatorial parameter of a graph: the maximum matching size the independence number α(G), the minimum vertex cover siz...

متن کامل

Sublinear time, measurement-optimal, sparse recovery for all

An approximate sparse recovery system in `1 norm makes a small number of measurements of a noisy vector with at most k large entries and recovers those heavy hitters approximately. Formally, it consists of parameters N, k, , anm-by-N measurement matrix, Φ, and a decoding algorithm,D. Given a vector, x, where xk denotes the optimal k-term approximation to x, the system approximates x by x̂ = D(Φx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006